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Abstract: Accurate quantification of the terrestrial evapotranspiration (ET) components of plant
transpiration (T), soil evaporation (E) and evaporation of the intercepted water (I) is necessary for
improving our understanding of the links between the carbon and water cycles. Recent studies have
noted that, among the modeled estimates, large disagreements exist in the relative contributions of
T, E and I to the total ET. As these models are often used in data assimilation environments for
incorporating and extending ET relevant remote sensing measurements, understanding the sources
of inter-model differences in ET components is also necessary for improving the utilization of such
remote sensing measurements. This study quantifies the contributions of two key factors explaining
inter-model disagreements to the uncertainty in total ET: (1) contribution of the local partitioning and
(2) regional distribution of ET. The analysis is conducted by using outputs from a suite of land surface
models in the North American Land Data Assimilation System (NLDAS) configuration. For most of
these models, transpiration is the dominant component of the ET partition. The results indicate that
the uncertainty in local partitioning dominates the inter-model spread in modeled soil evaporation E.
The inter-model differences in T are dominated by the uncertainty in the distribution of ET over the
Eastern U.S. and the local partitioning uncertainty in the Western U.S. The results also indicate that
uncertainty in the T estimates is the primary driver of total ET errors. Over the majority of the U.S.,
the contribution of the two factors of uncertainty to the overall uncertainty is non-trivial.

Keywords: evapotranspiration partitioning; transpiration; soil evaporation, uncertainty

1. Introduction

Evapotranspiration (ET) is a key component of the terrestrial water cycle and it plays a critical
role in the climate system by regulating the land-atmosphere fluxes and feedbacks ([1,2]). As a result,
there have been several community efforts to quantify the global and regional uncertainties in estimating
ET in land surface models and remote sensing-based measurements ([3–7]). These studies demonstrated
that patterns of seasonality and spatial distribution of ET across climate regimes are generally well
captured by the ET products, though uncertainty still remains in the total ET estimates ([4]).

By comparison, less attention has been paid to studying the uncertainty in partitioning of ET into
its source components: transpiration (T), soil evaporation (E) and canopy evaporation of intercepted
rainfall (I). In particular, the partitioning between T and E is key to an accurate coupling of water and
carbon cycles and a variety of water and agricultural management applications ([8,9]). T, documented
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to be the main component of the global ET ([10,11]), is influenced by stomatal control in response
to water stress. Both E and T occur in response to atmospheric evaporative demand and are limited
by water availability. The main difference is that T is further affected by vegetation growth and
stomatal control. The lower albedo and the differences in aerodynamic conductance associated with
vegetation also have significant impacts on the available energy for T. Furthermore, whereas water
availability for E is determined by the surface soil moisture, accessible water for T is determined by
the rooting depth. The result is that these two processes exhibit different rates of response to the same
water and energy inputs (precipitation and solar radiation). I is primarily influenced by precipitation
(in particular, rainfall frequency and rainfall rate) and vegetation characteristics ([12]). Improvements
in the characterization of I will benefit catchment-scale water balance applications as it bypasses the
soil reservoir entirely. One reason for the lack of a thorough understanding of the ET partition is the
fact that in situ global measurements of the ET components are very sparse ([13]). Several studies use
process-based model formulations informed by remote sensing datasets to quantify the uncertainty in
the ET partition ([7,8,14,15]). These studies confirm the dominant role of transpiration over vegetated
and wet regions and soil evaporation over dry regions, in influencing ET. The outputs from land
surface models (LSMs) driven by observation-based meteorology are also often used for deriving
estimates of ET components. Recent studies have noted large disagreements in the relative distributions
of T, I and E ([3,7,16]). This disagreement exists both between LSMs ([3]) and in process-based ET
retrievals ([7]). As direct measurements of ET and ET components are not available from remote
sensing instruments, such model formulations are critical in translating the relevant measurements
to geophysical variables. Furthermore, these models are the basis of data assimilation environments
that help to extend the spatial and temporal coverage of the typically discontinuous remote sensing
measurements. As a result, understanding and quantifying the differences in the modeled estimates of
ET components is important for improving the utilization of available remote sensing information.

Prior studies have suggested that the source of uncertainty in the relative distributions of the ET
components limits the ability of the models to provide sensitivities of ET to precipitation deficits and
land cover change, which in turn impacts the ability of the models to predict the progression of extreme
events such as droughts ([17,18]). Although the reported disagreements in the ratio of T to ET have
placed a spotlight on key process descriptions affecting the global ET partitioning estimates, the global
aggregations make it somewhat difficult to interpret. For example, even if two different LSMs have
the same (time-integrated) T fraction at each model grid cell, they can yield different fractions in their
global comparisons if they do not agree on the distribution of total ET between T dominated regions
and E dominated regions. The opposite can also occur; differences in local grid-level partitioning
can be masked by differences in regional distribution. It is important to distinguish between these
two alternative explanations (local partitioning vs regional distribution of total ET) so that efforts
to improve the LSMs can be directed appropriately. Note that these two factors are analogous to
examining the impact of absolute and relative magnitudes of ET components.

In this study, we explore the level of agreement in ET partitioning for the continental U.S.
using outputs from a suite of LSMs implemented in the North American Data Assimilation System
(NLDAS; [19]) configuration. NLDAS is a multi-institution effort, which runs four LSMs operationally
(Noah version 2.8, [20–22]; Mosaic, [23,24]; Variable Infiltration Capacity (VIC) version 4.0.3, [25];
and Sacramento Soil Moisture Accounting (SAC), [26]) using observation-based meteorological data.
More recent efforts have focused on upgrading the current suite of NLDAS models ([27]). We use
the outputs from both the operational NLDAS Phase 2 (NLDAS-2) and from four additional models
planned for the next phase of NLDAS (Noah version 3.6, [28,29]; Catchment LSM, [30,31]; VIC version
4.1.2l, [32]; and a configuration of Noah-MP, [33,34]) in the NLDAS-2 configuration. The version of
SAC used in NLDAS-2 does not compute surface flux partition estimates and therefore is not included
in this study. For these models, we examine the domain-wide and regional breakdown of the ET
partitioning to determine whether the overall disagreement stems from local flux partitioning or
variations in the regional distribution of total ET. Specifically, this paper examines the sources of
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disagreements in bulk partitioning. In addition, the ensemble model outputs are used to estimate the
uncertainty in the flux partitioning and how the uncertainty varies spatially across the Continental U.S.
(CONUS) domain.

2. Models

LSM simulations using the seven models are conducted over the NLDAS-2 domain, which spans
from 25◦N to 53◦N and 125◦W to 67◦W on a 0.125◦ lat by 0.125◦ lon grid. Model outputs over an
11-year time period (from January 2002 to December 2012) are considered in this study. All models are
forced with the same NLDAS-2 meteorology data (Xia et al. [19]) with a 15-min timestep (except for
both versions of VIC, which use an hourly timestep).

Generally, all LSMs considered here follow the Penman–Monteith (P–M) approach with different
model parameterizations for ET relevant computations. In the Noah model formulations, the P–M
approach is used for computing potential evapotranspiration (PET), which is then used for computing
E and T. E is modeled by scaling PET as a function of soil moisture availability and fractional
vegetation coverage ([35]). Similarly, a plant coefficient term, canopy water content and fractional
vegetation are used to scale the PET for computing T. The plant coefficient term represents the effects
of the stomatal control and is formulated to include canopy resistance factors representing the effects
of solar radiation, vapor pressure deficit, air temperature and soil moisture. The canopy resistance
computations are based on [36] in Noah28 and Noah36, whereas NoahMP uses a dynamic vegetation
formulation based on [37]. The canopy interception contribution to ET in these models is a function
of the interception reservoir, which is modeled as a function of either the Leaf Area Index (LAI) or
fractional vegetation.

Similar to Noah, the E and T in VIC are calculated by scaling the PET, which is calculated using a
modified P–M equation ([38]). A Jarvis-style formulation is used to model the stomatal resistance, as a
function of air temperature, vapor pressure deficit and photosynthetically active radiation. A distinct
feature of VIC is that the soil evaporation is dependent on the non-vegetated areas only (i.e., it does
not explicitly consider evaporation from soil underlying vegetation).

The Catchment LSM (CLSM) employs a non-traditional approach where the subgrid heterogeneity
in soil moisture is statistically represented by subdividing the land portion of the grid cell into three
distinct regions: (1) a saturated region where evaporation occurs without the consideration of water
stress; (2) a subsaturated region where transpiration occurs with limited water stress and (3) a wilting
region where transpiration is completely shut off. The relative weights for these three regions are
defined as functions of the local topography and soil water prognostic variables. The energy balance
formulations in CLSM are derived from that of the Mosaic model (which has a traditional layered soil
moisture structure). In both CLSM and Mosaic, the transpiration formulations follow the model of [39].
More detailed description of the model physics formulations of these models is provided in [27].

All of the LSMs use the University of Maryland’s UMD Land Cover classification, which was
derived from the Advanced Very High Resolution Radiometer (AVHRR) satellite imagery between
1981 and 1994 to create a static land cover map. This classification uses 13 vegetation types, plus
one for water. Most of the LSMs (e.g., Noah, Noah-MP) were able to use these types directly, while,
in some cases (e.g., CLSM), a mapping was performed between the UMD vegetation classes and the
classes specific to that model. The state soil geographic (STATSGO) soil database ([40]) is used to
specify the soil texture types in the model configurations. Monthly vegetation climatologies of the
fraction of green vegetation (GVF) and/or LAI were used, depending on the model, although all
models used the same or very similar source for these vegetation datasets. The one exception is that
the Noah-MP LSM, as configured for this study, used the dynamic vegetation module, which simulates
the masses (leaf, stem, root, etc.) of the vegetation prognostic variables and calculates the GVF/LAI
instead. The key details of the model configurations are summarized in Table 1.
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Table 1. Configuration of the model simulations used in this study. NLDAS—North American
Land Data Assimilation System; CLSM—Catchment land surface model; VIC—variable infiltration
capacity; AVHRR—Advanced Very High Resolution Radiometer; UMD—University of Maryland;
STATSGO—state soil geographic; LAI—leaf area index; GVF—green vegetation fraction.

Model domain Continental U.S.
(25◦N to 53◦N and 125◦W to 67◦W)

Spatial resolution 0.125◦

Forcing input NLDAS-2 data

Timestep (Noah (2.8, 3.6, MP), Mosaic, CLSM) 15 min
VIC (4.0.3, 4.1.2.l) 1 h

Landcover AVHRR-based UMD land cover classification
Soils STATSGO soil texture
LAI/GVF (except Noah-MP) AVHRR-based climatology

3. Methods

The analysis of CONUS wide partitioning of ET is based on the multiyear average annual flux
attributed to the three source components (S referring to T, E or I). For each model m, the fraction of
total ET is calculated for each source component (F(S)) as the summation over space (x representing
the grid cell):

F(S)m =
ΣxSx,m

Σx(Ex,m + Tx,m + Ix,m).
(1)

This summation is used in most prior studies [3,7] to quantify the uncertainties in global ET
partitioning. Note that no correction for latitudinal differences are included in the areal summation of
these terms. To investigate the level of agreement in F(S) between models over the spatial domain,
we also calculate the fractional contribution of the three evaporation sources at each grid cell location x:

F(S)m,x =
Sx,m

(Ex,m + Tx,m + Ix,m).
(2)

Because F(S)m Equation (1) is not the domain average of the F(S)m,x Equation (2), this by itself
may not explain the differences in the domain-wide ET partition (F(S)m). To identify the source of
inter-model disagreement in the ratios of each component over total ET, we analyze two potential
sources of discrepancy: (1) the uncertainty in the fractional partition across the models and (2) the
uncertainty in the total ET in the models and how it influences the magnitude of the ET components.
We therefore define two measures that isolate the contribution of these factors, as follows:

The first term, the contribution of the partitioning uncertainty to the uncertainty in total domain
partitioning (CP) is defined as:

CP(S)x = mean[(Ex,m + Tx,m + Ix,m)]× stdev[(F(S)m,x)], (3)

where the mean and stdev represent the multi-model mean and standard deviation, respectively.
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This contribution can be contrasted with the second term, the contribution of uncertainty in total
ET (CET) to the partitioning, defined as:

CET(S)x = stdev[
(Ex,m + Tx,m + Ix,m)

Gm
]× mean[(F(S)m,x)], (4)

where Gm is the total ’gain’ for each model represented by:

Gm =
Σx(Ex,m + Tx,m + Ix,m)

mean[Σx(Ex,m + Tx,m + Ix,m)].
(5)

The gain term corrects for the mean bias in total ET across the domain for each model, which
does not affect the domain-wide partitioning obtained through Equation (1). Essentially, CP is defined
by scaling the average total ET across the models by the standard deviation of the fractional ET
partition, whereas CET is defined by scaling the variability in the total ET by the average fractional
ET partition. Thus, CP and CET terms highlight the contributions of the uncertainty in fractional
partitioning, and contributions of the uncertainty in total ET to the inter-model differences in the T, E
and I estimates, respectively. The patterns in CP and CET can be used to figure out where the model
development efforts to improve the ET components should be focused.

4. Results and Discussion

Figure 1 shows the domain averaged partition using Equation (1) for the seven models that are
employed in this study. Note that the circles are scaled in proportion to the domain averaged ET
estimate from each model. The variation in size shows that there is significant uncertainty across the
models in the domain averaged ET, even though all of them employ the same forcing data, landcover,
soils and topography information. In addition, there are significant disagreements in the domain-wide
ET partitioning. Consistent with the literature, the T component is the dominant source of ET in
most models except in case of CLSM, while the T and E are roughly equal in Noah-2.8 and in Mosaic.
The ET partitioning is particularly different in both versions of VIC, where E is the smallest of the
three components and T constitutes most of the total ET, likely due to the fact that VIC does not
employ time varying vegetation information for computing E. The multimodel mean estimate of ET
partitioning is 53.6% for T, 30.8% for E and 15.6% for I, which shows a slightly higher portion of T
relative to E than the multimodel averages reported by the Global Soil Wetness Project-2 (48% for T,
36% for E and 16% for I; [3]). In situ and process model-based partitioning studies have reported
significantly different estimates for the T and E partitions. Using partitioning estimates derived from
eddy-covariance, sap-flow and isotopic approaches, Ref. [11] reports the relative contributions of T
and E to total ET to be at 61% (±15%) and 39% (±10%), respectively. Similarly, Ref. [7] indicates that
the T fraction of total ET vary between 24% to 76% and that of E vary between 14% to 26% from three
different process-based evaporation methodologies.

The spatial distribution of the ET and the ET partition is examined in Figures 2 and 3. As shown
in Figure 2, the mean and standard deviation of ET is higher in the Eastern U.S. and lower in the
Western U.S., indicating that the absolute differences among the models is high over the Eastern U.S.
The coefficient of variation (CV; ratio of standard deviation to the mean) of total ET also indicates that
the relative variability of total ET is higher in the Eastern U.S., compared to the West. This is consistent
with prior multi-model studies ([3,4,7,19,41]) that report similar spatial distribution patterns of larger
magnitude and variability of inter-model differences in ET over the Eastern U.S. compared to the more
arid Western U.S.
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Figure 1. CONUS-scale partitioning fraction of ET into its constituent components of transpiration (T),
soil evaporation (E) and canopy evaporation (I) from seven land surface models and the multi-model
average in the NLDAS2 configuration for a time period of January 2002 to December 2012. The numbers
in that circle indicate the percentage of the total ET for each of the three components. The sizes of the
circles are proportional to the total CONUS-wide average ET for each model (which are shown in blue
color, at the bottom of each circle). A scale for the size of the radius is shown in the figure.

(a) (b) (c)

Figure 2. Mean ((a); W/m2) and standard deviation ((b); W/m2) and coefficient of variation ((c); -) of
total ET.

The mean, standard deviation and CV of F(T), F(E) and F(I) derived from Equation (2) across
the models are shown in Figure 3. There is significant spatial variability in the F(T) and F(E) estimates,
whereas the models show much less variation in F(I), which is generally below 20% of the total ET.
Transpiration is the dominant source of ET over the vegetation dominated Eastern U.S., whereas soil
evaporation is the dominant source only in the more arid parts of Western U.S. The multi-model
standard deviation of F(T) and F(E) is low in the Eastern U.S. and high in the Western U.S., indicating
that the models agree in the fractional partition over the Eastern U.S. and disagree over the Western
U.S., which is different from the pattern of larger standard deviation in total ET over the Eastern
U.S. The GVF/LAI values used in these LSMs are higher in the Eastern U.S., leading the models to
consistently have a higher F(T). However, the exact magnitude of T and thus total ET in the East
varies between LSMs due to their individual parameterizations of calculating the canopy resistance.
In other words, the models are very similar in the Eastern U.S. in partitioning total ET into T or I due
to high GVF/LAI values, but differ in calculating the magnitudes. In the Western U.S., the magnitudes
of ET are lower due to lower soil moisture as well as lower GVF/LAI values. Here, the LSMs vary
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in partitioning between T and E as a result of differences in calculating soil evaporation discussed
in Section 2 (e.g., VIC not considering soil evaporation underlying vegetation, Noah-MP’s dynamic
vegetation potentially simulating different vegetation amounts than the other LSMs, CLSM’s three
regions of soil moisture heterogeneity). In the West, the LSMs tend to more consistently simulate lower
ET, but differ in how this ET is partitioned. This result is consistent with the similarity analysis of
ET presented in [27]. Similarly, the CV values of F(T) is higher in the West and lower in the East,
unlike the pattern of CV for the total ET. The relative variability of F(E) and F(I), on the other hand,
is more uniform across the domain. It is worth noting that, relative to ET model intercomparison
efforts, only a few studies have examined the inter-model differences in the ET partition components.
When comparing three process-based ET estimates, Ref. [7] reports similar spatial patterns of T and E
and I over the CONUS.

Figure 3. Mean (a,d,g), standard deviation (b,e,h) and coefficient of variation (c,f,i) of the ET partition
fraction of T, E and I (unitless) across the seven LSMs.

Figure 3 indicates that the fractional partitioning (F(S)) alone does not explain the aggregate
differences in the domain-wide ET partitioning seen in Figure 1, only in combination with the magnitude
of total ET can the real cause of these inter-model variations be understood. The contribution of these
two sources of uncertainty in domain-wide ET partitioning, the uncertainty in local partitioning and
the uncertainty in total ET are quantified by CP and CET estimates’ Equations (3) and (4) and are shown
in Figure 4. For T and E, the contribution of the partition uncertainty is high in the Eastern U.S. and
lower in the Western U.S. Note that this behavior is different from the patterns in Figure 3, where the
standard deviation of the T and E fractions is higher in the West and lower in the East. In other words,
the uncertainty in local ET partition shows different trends when they are scaled by the multimodel
average ET. Similarly, the CET maps show larger values in the east and lower estimates in the west,
particularly for T. In the CP maps, the magnitudes for T and E are comparable, whereas the T uncertainty
is significantly higher than that of E in the CET comparisons. This implies that, whereas the contribution
of the partition uncertainty is comparable for T and E, the contribution of uncertainty in total ET has a
more dominant effect for T. Again, the LSMs differ in how they calculate the canopy resistance, leading to
larger variability in the magnitude of T in areas with higher total ET and GVF/LAI. A similar east–west
contrast in the uncertainty contributions is seen in the CP and CET maps for I, though the magnitudes
of the uncertainty contributions are smaller than that of T and E. The patterns in the Figures 3 and 4
also indicate the strong influence of water availability, a factor that is known to be a key driver of ET
uncertainty ([42]).
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T

E

I

CETCP

Figure 4. Contribution of uncertainty in ET partitioning (CP; left column) and the contribution of
uncertainty in total ET (CET ; right column) to the total domain partitioning (in units of W/m2).

Comparison of CP and CET estimates can be used to develop attributions of uncertainty for each
component in each region. Figure 5 shows the maps of differences in the contribution terms of CP and
CET . It can be seen that the contribution of uncertainty in total ET dominates the inter-model spread in
ET partition of T over the Eastern U.S., whereas the contribution of the partitioning uncertainty is more
dominant in other regions. For E, the CP is the dominant source of uncertainty throughout the domain.
The relative contributions of the two sources of uncertainty are small and spatially uniform for I.
The largest uncertainties in CP and CET are seen over the south-central U.S. Spatially, the fraction of CP
and CET varies between approximately 10 to 30% for both T and E, suggesting that the contributions of
these uncertainty factors are non-trivial over majority of the domain. Panel (d) of Figure 5 presents the
domain averaged values of the ET components, the CP and CET factors and their respective standard
deviations, which quantifies that the partitioning uncertainty in the models is the major contributor to
the inter-model differences in the constituent ET partition terms.

Figure 5 is helpful in determining the major factors of uncertainty in the ET partitioning at a
particular location and evaporation source. We also examine how these component uncertainties
impact the accuracy of the ET estimates. Mean ET root mean square difference (RMSD) of the LSMs
is estimated by comparing to the gridded FLUXNET multi tree ensemble (MTE) ([43]) data and is
shown in Figure 6. The FLUXNET MTE data is a synthesis product that combines the information from
station flux and meteorological measurement to produce a spatially distributed product at monthly
time scale. The average RMSD in ET is higher in the East and lower in the West, which mirrors the
pattern of east–west contrast of (CP(T)− CET(T)) (and the pattern of standard deviation of total ET
in Figure 2). The average RMSD in ET is highest in areas where the mean ET is high (Figure 2a); areas
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that also have T as the dominant source of ET (Figure 3a). This means that, for use of ET estimates in
CONUS-wide water balance applications (where absolute values are important), transpiration stands
out as the key process to improve, and that uncertainty in total ET is the largest contribution to errors
in T (Figure 5a).

 0

 5

 10

 15

 20

 25

 30

 35

T E I

Mean
CP

CET

E(a)

I

T (b)

(c) (d)

Figure 5. Maps of (CP − CET ; Panels (a–c)) in units of W/m2 for T, E and I that denote the relative
impact of the ET partitioning and total ET in the total domain partitioning. Panel (d) shows the domain
averaged values of the ET components, CP and CET terms and their respective standard deviations.

Figure 6. Mean RMSD (W/m2) in ET compared to the FLUXNET MTE data.

The relative contribution of the partitioning uncertainty and total ET was also examined by
stratifying by season (Figure 7). The strong influence of warm seasonality is obvious in these
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comparisons, consistent with the literature on ET uncertainty ([42]). Similar patterns to that of
Figures 4 and 5, where CP is a dominant factor in the E partition and CET as the dominant factor over
the Eastern U.S. for T are observed in the seasonal stratifications. These patterns are most magnified
over the summer (JJA), followed by the spring (MAM) and fall (SON) time periods. The contrast and
the magnitude of uncertainty contribution factors were small during the winter time period (DJF).
The dependence of the results on the choice of the models in the ensemble was also investigated
using a reduced set of models, by excluding Noah-3.6 and VIC-4.1.2.l. The results were very similar,
confirming that the conclusions presented here are not biased due to the use of some models (Noah-2.8
and Noah-3.6; VIC-4.0.3 and VIC-4.1.2.l) that are similar in their structure and parameterizations.

T E

D
JF

M
A
M

JJ
A

SO
N

Figure 7. Maps of (CP − CET ; in units of W/m2 for T (left column) and E (right column)
stratified seasonally.

5. Conclusions

Evapotranspiration, representing the energy and moisture exchange between the land surface and
the atmosphere is a critical term in the terrestrial water balance. ET consists of three main components
of transpiration, soil evaporation and canopy interception, which represent the primary physiological
and biological controls on the carbon and water cycles. Understanding the variability of these
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constituent terms is necessary for improving the estimation of ET. Though LSMs provide an effective
way to generate spatially and temporally continuous estimates of ET and its components, several
studies have reported large differences in the LSM-based ET partitioning. Such uncertainties also
impact the efficiency of data assimilation environments, which employ these LSMs for incorporating
relevant remote sensing information to develop physically consistent representations of ET and its
components. This study explores the factors explaining such disagreements for the CONUS region
using the outputs from a suite of LSMs in the NLDAS-2 project.

These models show large disagreements in the average T and E fractions as well as the total ET
over the CONUS domain. The transpiration component dominates the ET partition in the multimodel
average, accounting for 53.6% of the total ET. The soil evaporation and canopy interception accounts
for 30.8% and 15.6% of the total ET. The spatial distribution of the ET partition shows significant
variability with the T and E dominating the ET partition over the Eastern and Western U.S., respectively.
Since the magnitude of the total ET is a significant factor in the inter-model differences in T and E,
the article presents an approach to isolate the contribution of the partitioning uncertainty (CP) and
the uncertainty in total ET (CET) to the ET partitioning. CP is estimated by scaling the multimodel
average ET with the standard deviation of the fraction of the evaporation balance, whereas CET is
estimated by scaling the average fraction of the evaporation balance with the standard deviation in the
total ET. The regional breakdown of uncertainty in the ET partition shows that the contribution of
uncertainty in total ET to the T uncertainty is dominant over the Eastern U.S., whereas the uncertainty
from partitioning is the dominant factor over the Western U.S. The results also indicate that the sources
of uncertainty in T are key contributors of overall errors in total ET. For E, CP is the major factor of
uncertainty throughout the domain. These trends persist in the seasonal stratification with the largest
uncertainties in summer (JJA), followed by spring (MAM), fall (SON) and winter (DJF) time periods.

The analysis in the article suggests that model formulation and parameterization differences
are key sources of uncertainty in the ET partitioning. The areas with relatively high agreements in
the ET partition and total ET are limited to areas in the west with moderate vegetation. Compared
to the total ET, over most regions of the CONUS, the fraction of CP and CET for T and E to the
total ET ranges approximately from 10 to 30%, indicating that the contribution of these factors to
the overall ET inter-model spread is significant. This study also suggests that efforts to reduce the
ET partition uncertainties in the model are needed to reduce the inter-model differences in E and T
estimates from the LSMs. Improving upon the simple representations of parameters such as vegetation
fraction, vegetation/radiative stress functions and rooting depth that are currently employed by
the LSMs is likely needed for improving the skill and reducing the uncertainty of the ET terms.
Similarly, improving the model formulations of I would be beneficial in reducing the uncertainty in
ET, particularly over vegetated areas. Recent studies such as [44] have also highlighted the significant
sensitivity of flux estimates from the LSMs to model parameters and the need to calibrate and improve
them. Over transpiration-dominated areas (e.g., Eastern U.S.), efforts to reduce the uncertainty
in partitioning of the available net radiation is also needed for improving the level of agreement
between models.

Author Contributions: D.M.M. and S.W. performed the model runs for Noah-MP-3.6, CLSM-F2.5 and VIC
4.1.2.l, S.K. and T.H. led the analysis and C.P.-L. contributed to the interpretation and synthesis of results and
key conclusions.

Acknowledgments: This study was supported by NOAA’s Climate Program Office’s Modeling Analysis,
Predictions and Projections (MAPP) program through Grant #GC14-194A. Computing was supported by the
resources at the NASA Center for Climate Simulation. The NLDAS-2 forcing and land surface model data used in
this effort were acquired as part of the activities of NASA’s Science Mission Directorate, and are archived and
distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Youlong Xia
(NOAA/NCEP) is acknowledged for his efforts with NLDAS2.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2018, 10, 751 12 of 14

Abbreviations

The following abbreviations are used in this manuscript:

ET evapotranspiration
T transpiration
E soil evaporation
I canopy evaporation of intercepted water
LSM land surface model
NLDAS North American land data assimilation system
VIC variable infiltration capacity
CLSM catchment land surface model
Noah-MP Noah multi physics model
SAC Sacramento soil moisture accounting
P–M Penman–Monteith
PET potential evapotranspiration
LAI leaf area index
GVF green vegetation fraction
AVHRR advanced very high resolution radiometer
CONUS continental united states
MTE multi tree ensemble
DJF December January February
MAM March April May
JJA June July August
SON September October November
CV coefficient of variation
RMSD root mean square difference

References

1. Koster, R.D.; Sud, Y.C.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.;
Davies, H.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview.
J. Hydrometeorol. 2006, 7, 590–610. [CrossRef]

2. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J.
Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161.
[CrossRef]

3. Dirmeyer, P.A.; Gao, X.; Zhao, M.; Guo, Z.; Oki, T.; Hanasaki, N. GSWP-2: Multimodel Analysis and
Implications for Our Perception of the Land Surface. Bull. Am. Meteorol. Soc. 2006, 87, 1381–1397. [CrossRef]

4. Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.;
Betts, A.K.; Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys.
Res. Atmos. 2011, 116, D02102. [CrossRef]

5. Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.;
Maignan, F.; et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set
synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 3707–3720. [CrossRef]

6. Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.;
Mu, Q.; et al. The WACMOS-ET project—Part 1: Tower-scale evaluation of four remote-sensing-based
evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [CrossRef]

7. Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.;
Dolman, A.J.; Fisher, J.B.; et al. The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation
data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [CrossRef]

8. Zhou, S.; Yu, B.; Zhang, Y.; Huang, Y.; Wang, G. Partitioning evapotranspiration based on the concept of
underlying water use efficiency. Water Resour. Res. 2016, 52, 1160–1175. [CrossRef]

9. Good, S.; Moore, G.; Miralles, D. A mesic maximum in biological water use demarcates biome sensitivity to
aridity shifts. Nat. Ecol. Evol. 2017, 1, 1883–1888. [CrossRef] [PubMed]

http://dx.doi.org/10.1175/JHM510.1
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1175/BAMS-87-10-1381
http://dx.doi.org/10.1029/2010JD014545
http://dx.doi.org/10.5194/hess-17-3707-2013
http://dx.doi.org/10.5194/hess-20-803-2016
http://dx.doi.org/10.5194/hess-20-823-2016
http://dx.doi.org/10.1002/2015WR017766
http://dx.doi.org/10.1038/s41559-017-0371-8
http://www.ncbi.nlm.nih.gov/pubmed/29133901


Remote Sens. 2018, 10, 751 13 of 14

10. Jasechko, S.; Sharp, Z.; Gibson, J.; Birks, S.; Yi, Y.; Fawcett, P. Terrestrial water fluxes dominated by
transpiration. Nature 2013, 496, 347–350. [CrossRef] [PubMed]

11. Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189–190, 115–117.
[CrossRef]

12. Miralles, D.G.; Gash, J.H.; Holmes, T.R.H.; de Jeu, R.A.M.; Dolman, A.J. Global canopy interception from
satellite observations. J. Geophys. Res. Atmos. 2010, 115. [CrossRef]

13. Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The Partitioning of Evapotranspiration
into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere
Interaction. J. Hydrometeorol. 2007, 8, 862–880. [CrossRef]

14. Zhang, Y.; Chiew, F.H.S.; Peña-Arancibia, J.; Sun, F.; Li, H.; Leuning, R. Global variation of transpiration and
soil evaporation and the role of their major climate drivers. J. Geophys. Res. Atmos. 2017, 122, 6868–6881.
[CrossRef]

15. Wei, Z.; Yoshimura, K.; Wang, L.; Miralles, D.G.; Jasechko, S.; Lee, X. Revisiting the contribution of
transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [CrossRef]

16. Zhang, Y.; Pena-Arancibia, J.; McVicar, T.; Chiew, F.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.; et al.
Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124.
[CrossRef] [PubMed]

17. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling,
climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [CrossRef]

18. Teuling, A.J.; Loon, A.F.V.; Seneviratne, S.I.; Lehner, I.; Aubinet, M.; Heinesch, B.; Bernhofer, C.; Grünwald, T.;
Prasse, H.; Spank, U. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 2013,
40, 2071–2075. [CrossRef]

19. Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al.
Continental-scale water and energy flux analysis and validation for the North American Land Data
Assimilation System Project Phase 2 (NLDAS-2), Part 1: Comparison Analysis and Application of Model
Products. J. Geophys. Res. Atmos. 2012, 117. [CrossRef]

20. Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of
land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos.
1996, 101, 7251–7268. [CrossRef]

21. Ek, M.; Mitchell, K.; Yin, L.; Rogers, P.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of
Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res. 2003, 108.
[CrossRef]

22. Xia, Y.; Mitchell, K.; Ek, M.; Cosgrove, B.; Sheffield, J.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; Livneh, B.; et al.
Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation
System Project Phase-2 (NLDAS-2), Part 2: Validation of model-simulated streamflow. J. Geophys. Res. 2012, 117.
[CrossRef]

23. Koster, R.; Suarez, M. Energy and Water Balance Calculations in the Mosaic LSM; Technical Report 104606;
NASA: Washington, DC, USA, 1996.

24. Koster, R.D.; Suarez, M.J. Modeling the land surface boundary in climate models as a composite of
independent vegetation stands. J. Geophys. Res. Atmos. 1992, 97, 2697–2715. [CrossRef]

25. Liang, X.; Lettenmaier, D.; Wood, E.; Burges, S. A simple hydrologically based model of land surface water
and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [CrossRef]

26. Burnash, R.; Ferral, R.; McGuire, R. A Generalized Streamflow Simulation System: Conceptual Models for Digital
Computer; Technical Report; Joint Federal-State River Forecast Center: Sacramento, CA, USA, 1973.

27. Kumar, S.V.; Wang, S.; Mocko, D.M.; Peters-Lidard, C.D.; Xia, Y. Similarity Assessment of Land Surface Model
Outputs in the North American Land Data Assimilation System. Water Resour. Res. 2017, 53, 8941–8965.
[CrossRef]

28. Wang, Z.; Zeng, X.; Decker, M. Improving snow processes in the Noah land model. J. Geophys. Res. Atmos.
2010, 115. [CrossRef]

29. Wei, H.; Xia, Y.; Mitchell, K.E.; Ek, M.B. Improvement of the Noah land surface model for warm season
processes: Evaluation of water and energy flux simulation. Hydrol. Proc. 2013, 27, 297–303. [CrossRef]

http://dx.doi.org/10.1038/nature11983
http://www.ncbi.nlm.nih.gov/pubmed/23552893
http://dx.doi.org/10.1016/j.agrformet.2014.01.011
http://dx.doi.org/10.1029/2009JD013530
http://dx.doi.org/10.1175/JHM596.1
http://dx.doi.org/10.1002/2017JD027025
http://dx.doi.org/10.1002/2016GL072235
http://dx.doi.org/10.1038/srep19124
http://www.ncbi.nlm.nih.gov/pubmed/26750505
http://dx.doi.org/10.1029/2011RG000373
http://dx.doi.org/10.1002/grl.50495
http://dx.doi.org/10.1029/2011JD016048
http://dx.doi.org/10.1029/95JD02165
http://dx.doi.org/10.1029/2002JD003296
http://dx.doi.org/10.1029/2011JD016051
http://dx.doi.org/10.1029/91JD01696
http://dx.doi.org/10.1029/94JD00483
http://dx.doi.org/10.1002/2017WR020635
http://dx.doi.org/10.1029/2009JD013761
http://dx.doi.org/10.1002/hyp.9214


Remote Sens. 2018, 10, 751 14 of 14

30. Koster, R.D.; Suarez, M.J.; Ducharne, A.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling
land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res. Atmos. 2000,
105, 24809–24822. [CrossRef]

31. Ducharne, A.; Koster, R.; Suarez, M.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling
land surface processes in a general circulation model: 2. Parameter estimation and model demonstration.
J. Geophys. Res. 2000, 105, 24823–24838. [CrossRef]

32. Gao, H.; Tang, O.; Shi, X.; Zhu, C.; Bohn, T.; Su, F.; Sheffield, J.; Pan, M.; Lettenmaier, D.; Wood, E. Water Budget
Record from Variable Infiltration Capacity (VIC) Model Algorithm Theoretical Basis Document; Technical Report;
Department of Civil Engineering, University of Washington: Washington, DC, USA, 2010.

33. Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.;
Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP):
1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116.
[CrossRef]

34. Yang, Z.L.; Niu, G.Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.;
Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options
(Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116, D12110. [CrossRef]
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